Curriculum Vitae

William A Pruett, Ph.D.

2500 North State Street

Jackson, MS 39216

drew@hcsimulation.com 254-563-6033

wpruett@umc.edu 601-815-1316

Professional Profile

- Mathematician trained in representation theory, geometry, and combinatorics with a broad knowledge base in numerical analysis and algorithms
- Trained in cardiovascular, renal, and endocrine physiology
- In depth knowledge of mathematical modeling of physiological systems in an integrative setting
- Effective communicator, able to present big ideas to non-specialists
- Broad knowledge bases allowing easy communication with specialists in other fields
- Experienced programmer in Mathematica, HumMod/DES, Berkeley Madonna, LaTeX

Education

Doctorate of Philosophy in Mathematics, 2010 - Baylor University, Waco, TX

Bachelor of Science in Mathematics, summa cum laude 2005 - Millsaps University, Jackson, MS

Dissertation

Advisor: Markus Hunziker

- Title: Diagrams and reduced Decompositions for Cominiscule Flag Varieties and Affine Grassmannians, advisor Markus Hunziker
 - Developed graphical method for calculating generalized R-polynomials of minimal length quotient representation intervals corresponding to cominuscule flag varieties. The method allowed exhaustive proof of combinatorial invariance of Kazhdan-Lusztig polynomials, and therefore the geometry of cominuscule flag varieties.
 - Combinatorial techniques developed in the finite cases were applied to the affine Grassmannians, enabling classification of rationally smooth points with graphical criteria.

Professional Experience

HC Simulation, LLC	Jackson, MS
 Chief Science Officer Responsible for development of Harvey, a cardio-renal model of <i>in silico</i> clinical trials Oversaw the development of a large scale data depot for calibra mathematical models, along with the database for storing and a Awarded Phase I and II SBIR grants for in silico clinical trials development 	ating and validating accessing this data
University of Mississippi Medical Center	Jackson, MS
Postdoctoral researcher and Instructor	Aug. 2010 – present
 Created a model of calcium homeostasis for HumMod. Duties in searches and reviews, extraction of differential-algebraic system Produced a population creation toolkit for calibrating HumMod age, or fitness segments of a population. Modules include MCN sampling algorithms, surrogate methodologies, and binned clust Realized a machine learning toolkit for deriving risk factors relat classifier. Developed a browser version of HumMod suitable for use in the undergraduate/graduate classroom. Participated in concept destesting of the product. Created topological tools for analyzing large data sets, either mod clinical studies. 	ns and validation. to given racial, gender, IC and measure based tering algorithms. ive to a stipulated sign, marketing, and
Teaching Experience University of Mississippi Medical Center Instructor	Jackson, MS Aug. 2013 – Present

- Taught "Advanced Machine Learning" in the School of Data Science from 2018-present. Class was conducted in a standard lecture format.
- Responsible for guiding the physiology graduate students through "Simulation of Physiological Mechanisms" (Physio 744) in 2014-present.

Postdoctoral researcher

Aug. 2010 — July 2013

 I shared the teaching duties for the "Introduction to computational physiology" for medical students in 2011-2020. Class was conducted as question-and-answer series in small groups. Responsible for guiding the physiology graduate students through "Simulation of Physiological Mechanisms" (Physio 744) in 2012-2013.

Baylor University
Graduate Teaching Assistant

Waco, TX Aug. 2006 – May 2010

 Teacher of Record for 3 hour class per semester (30-45 students) for eight semesters. Classes included precalculus, calculus I, and their Business school equivalents. I was responsible for every aspect of the class except writing the final exam (common final).

Research Interests

Lumped parameter modeling of cardiovascular and endocrine physiology, predictive modeling of complex systems, combinatorics of classical Weyl groups, knot polynomials.

Publications

- Clemmer JS, Pruett WA< Hester RL. In silico clinical trial of baroreflex activation therapy for the treatment of obesity-induced hypertension. PLoS One. 2021.
- Speed JS, Pruett WA, Lirette ST, Cook JJ, Phillips CL, Grayson BE. Cardiovascular risk factors following vertical sleeve gastrectomy in black Americans compared to white Americans. Obes Surg. 2021
- Clemmer JS, Pruett WA, Lirette ST. Racial and sex differences in the response to first line antihypertensive therapy. Front Cardiovasc Med. 2020.
- Pruett WA, Clemmer JS, Hester RL. Physiological Modeling and Simulation- Validation, Credibility, and Application. Ann. Rev. Bioeng. 2020.
- Clemmer JS, Pruett WA, Hester RL, Lohmeier TE. Preeminent role of the cardiorenal axis in the antihypertensive response to an arteriovenous fistula: an in silico analysis. 2019.
- Hester RL, Pruett WA, Clemmer JS, Ruckdeschel A. Simulation of integrative physiology for medical education. Morphologie. 2019.
- Clemmer JS, Pruett WA, Hester RL, Iliescu R, Lohmeier TE. Role of the heart in blood pressure lowering during chronic baroreflex activation: insight from an *in silico* analysis. Am J Physiol Heart Circ Physiol. 2018.
- Clemmer JS, Hester RL, Pruett WA. Simulating a virtual population's sensitivity to salt and uniphrectomy. Interface Focus. 2018.

- Sims CR, Delima LR, Calimaran A, Hester R, Pruett WA. Validating the physiologic model HumMod as a substitute for clinical trials involving acute normovolemic hemodilution. Anesth Analg. 2017.
- Blair ET, Clemmer JS, Harkey HL, Hester RL, Pruett WA. Physiological mechanisms of water and electrolyte disturbance following transsphenoidal surgery. World Neurosurg. 2017.
- Clemmer JS, Pruett WA, Coleman TG, Hall JE, Hester RL. Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling. Am J Physiol Reg Int Comp. 2016.
- Pruett WA, Clemmer JS, Hester RL. Validation of an integrative mathematical model of dehydration and rehydration in virtual humans. Physiol Reports. 2016 November; 4(22)
- Pruett WA, Lohmeier TE. Illogical critiques of the pressure natriuresis theory of chronic hypertension, Am J Hypertens 2016. 29(12): 1332-1334.
- Pruett WA, Hester R. The creation of surrogate models for fast estimation of complex model outcomes. PLoSOne. 2016. <u>http://dx.doi.org/10.1371/journal.pone.0156574</u>
- Hester RL, Pruett WA. Use of Computer Simulations to Understand Female Physiology: Where's the Data? Physiology (Bethesda). 2015 Nov;30(6):404-5.
- Zhang, S, Pruett WA, Hester R. Visualization and classification of physiological failure modes in ensemble hemorrhage simulation. in <u>The Conference on Visualization and Data Analysis</u>. 2015. San Francisco, CA.
- Pruett, WA, Hester RL. A decision support system predicting imminent cardiovascular shock. Proceedings of the Interagency/Industry Training, Simulation and Education Conference. 2014. Orlando, FL.
- Enright TJ, Hunziker M, Pruett WA, Diagrams of Hermitian type, highest weight modules, and syzygies of determinantal varieties in Symmetry: Representation Theory and its Applications: in Honor of <u>Noel R Wallach</u> (Progress in Mathematics 257). Birkhauser 2014.
- Pruett WA, Hester RL. Parathyroid hormone secretion by multiple distinct cell populations, a time dynamic mathematical model. *Physiol Rep* 2(2): e00231. *2014*. doi 10.1002/phy2.231.
- K. Wu, J. Chen, W. A. Pruett, and R. L. Hester. HumMod Browser: An Exploratory Visualization Tool for the Analysis of Whole-Body Physiology Simulation Data. *IEEE Symposium on Biological Data Visualization.* October, 2013
- Pruett WA, Husband LD, Husband G, Dakhlalla M, Bellamy K, Coleman TG, Hester RL. A population model of integrative cardiovascular physiology. *PLoS One* 8(9): e74329. *2013*. doi 10.1371/journal/pone.007429
- Walters K, Burgreen GW, Hester RL, Thompson D, Lavallee D, Pruett WA, Ford-Green J. Cyclic breathing simulations in large scale models of the lung airway from the oronasal opening to the terminal bronchioles. *Proceedings of the ASME International Mechanical Engineering Congress and Exposition* (2012)

- Walters K, Burgreen GW, Hester RL, Thompson D, Lavallee D, Pruett WA, Ford-Green J. Simulations of cyclic breathing in the conducting zone of the human lung. *Proceedings of the ASME Fluids Engineering Division Summer Meeting* (2012)
- WA Pruett, TG Coleman, RL Hester, The apparent hysteresis in hormone-agonist relations. *J Theor Biol* (2012) **296**: 1-5.
- RL Hester, AJ Brown, L Husband, R Iliescu, D Pruett, R Summers, TG Coleman, HumMod: A Modeling
 Environment for the Simulation of Integrative Human Physiology. *Frontiers in Physiology* (2011)
 2:12.

Presentations

MathFest (2003) A link between Fermat and a conjecture of Landau

- Joint Mathematics Meeting (2004) *Divisibility properties of class numbers of composite irreducibles in* $F_q[T]$
- MathFest (2004) Idempotent matrices over commutative principle ideal domains
- Joint Mathematics Meeting (2008) *Quotients of finite and affine Weyl groups by maximal parabolic subgroups and applications*
- AMS Spring Southeastern Section Meeting (2009) *Generalized Young diagrams for Hermitian symmetric spaces*
- Joint Mathematics Meeting (2010) Projections of Ocneanu traces are Kazhdan-Lusztig R-polynomials
- Purdue Nutrition Department Seminar (2011) Calcium homeostasis via the bone exchange pool
- UMMC Physiology Seminar (2011) A mathematical model of calcium and phosphate homeostasis
- UMMC Physiology Seminar (2012) Practical uncertainty: using experimental variance to validate and gain insight from mathematical models
- MS EPSCoR (2013): HumMod: An Integrative Mathematical Model of Human Physiology
- Frontiers in Medical Devices [ASME/FDA] (2013): Calibrating and analyzing a mathematical model of human circulation and its response to hemorrhage.
- MDIC/FDA (2014): Predictive enrichment by systematic integration of multilevel computation with experimental results
- I/ITSEC (2014): A decision support system predicting imminent cardiovascular shock
- Frontiers in Medical Devices [BMES/FDA] (2015): *Predicting non-response to renal denervation: an M&S* approach
- International Congress of Cognitive Modeling (2016): *Integrative Physiological Modeling: Looking at a larger picture* (plenary)
- Frontiers in Medical Devices [BMES/FDA] (2017) *The method of relational correlations to determine subpopulation characteristics.*

Medtronic (2017): Understanding and predicting variation.

FDA (2017): Predicting nonresponse to renal denervation: an M&S approach.

- FDA (2017): Coupling HumMod to Fluent: a tool for advanced patient-specific simulation.
- IMSH 2018 [Society for Simulation in Healthcare] (2018): *Predicting response to antihypertensive therapy in a broad population with physiological simulation.*
- Integrating Machine Learning and Predictive Simulation: From Uncertainty Quantification to Digital Twins [Institute for Mathematics and its Applications] (2018): Understanding and predicting physiological resistance with simulation and topological analysis

Mississippi Academy of Sciences (2018): Understanding and predicting variation.

Virtual Physiological Human (2018): Insights into mechanisms of resistance to renal denervation using topological analysis of simulation

UMMC Physiology Seminar (2018): Topological tools for elucidating systems response

FDA-BMES (2019): Digital Twins in Healthcare: an overview

Abstracts

MathFest 2007: Rationally smooth Schubert varieties associated with A_n

Experimental Biology (2011): A mathematical model of the calcium-bone exchange pool

EPSCoR Fall Meeting (2011): Modeling the calcium-bone exchange pool

Experimental Biology (2012): An integrative mathematical model of calcium homeostasis

- AAMC (2012): Predicting Student Performance on USMLE Step 1
- AAMC (2012): Building intuition in the classroom with integrative physiology simulations
- Annual Academic Surgical Congress (2013): Center specific factors and racial disparities related to deceased donor renal transplant
- Experimental Biology (2013): The assumption of heterogeneity in a mathematical model of the parathyroids leads to superior qualitative and quantitative response to complex stimuli
- Experimental Biology (2013): Bifurcating response to hemorrhage in a population of mathematical models of the circulation
- ASME/FDA (2013): Calibrating and analyzing a mathematical model of human circulation and its response to hemorrhage
- IMSH/SSIH (2014): Wagner: A real-time simulation for continuity of care training
- Experimental Biology (2014): Understanding variation in salt sensitivity in HumMod, a human physiological simulator

Experimental Biology (2015): Nonresponse to renal denervation in a simulated cohort of resistant hypertensive men

BMES/FDA (2015): Predicting non-response to renal denervation: an M&S approach

IMAG (2015): Rapid accurate estimation of physics based model outputs with surrogate techniques

Experimental Biology (2016): Predicting salt and diuretic sensitivity in a virtual population using topological data analysis

VPH (2016): Physiological sensitivity to salt and nephrectomy.

VPH (2016): Simulating physiological variability in human responses to renal denervation.

Academic Honors and Awards

National Merit Scholarship 1994-1998

Ford Teaching Fellowship, Millsaps University, 2003-2005

President's Fellow, Baylor University, 2005-2010

Graduate Student Teacher of the Year, Mathematics Department, Baylor University, 2009

ASBMB Student/Postdoctoral Fellow Hill Day March 2011

ASBMB Graduate Student and Postdoctoral Fellow Advisory Committee 2012-2013

Workshops

ICCM 2016: Act-R Phi and a physiological model. With Chris Dancy.